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Abstract. The equation U + w 2 ( t ) u  = 0 can be transformed to a system of two first-order 
differential equations y =My by different ways of parametrisation. The method of de- 
coupled exponents of Wei and Norman yields a Riccati differential equation for the 
unknown exponents and an easily interpretable solution y .  A solution with vanishing 
exponents in the parametrisation of Mulholland corresponds exactly to the WKB method. 
Therefore an approximate solution of the Riccati differential equation gives an improve- 
ment on the WKB. 

1. Introduction 

Most of the linear differential equations (DE) in physics are of second order. In this 
paper we shall study an important subset of them, those DE which can be reduced to 
normal form (for the exact conditions, cf Kamke 1942) 

U + W 2 ( t ) U  = 0 ,  

v + u 2 +  W 2 ( t )  = 0. 

(1) 

(2) 

or, after introducing a new variable by U = exp(j U dt), to the equivalent Riccati DE 

We assume in the following that w ( t )  is continuous in an interval I, containing t = 0; 
then there exists a global and unique solution for given initial values u(O), li(0). 
Unfortunately, only little is known beyond this statement. Only a few types of DE (1) 
allow a complete solution; some types have a theory of their own, but, in general, it is 
impossible to represent the solution by a finite number of quadratures and elementary 
functions. Therefore one has to have recourse to approximate methods of solution, for 
example to the WKB method. The condition for the applicability of the WKB method 
is a coefficient wz of the form w2(r )  = FZ(t ) /A  with a large factor l / A .  The solution of 
(1) is expressed as an exponential U = exp(iS(t)/A), where S ( t )  is expanded in a power 
series in A. The lowest-order solution then reads u ( t )  = exp(*i J w dt). Instead of going 
into details, we refer to two standard references (Morse and Feshbach 1953, Froman 
and Froman 1965). In 0 2 we transform equation (1) into a form suitable for the 
following investigations by introducing the equivalent matrix DE for the integral matrix 
Q (fundamental solution matrix) and by extracting two simple factors from Q. 

Some years ago, Wei and Norman (1963,1964) proposed a solution of equation (1) 
based on Lie algebraic methods. This method cannot, of course, solve equations 
otherwise unsolvable: the solution is reduced to the solution of a certain Riccati DE. 
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However, the solution appears in a very appealing form, and it allows an easy 
improvement on the WKB method. As far as we know, this method has not found many 
applications in the literature-frequency modulation (Mulholland 1970, Mulholland 
and Machiraju 1973), light propagation (Strezh 1976), quantum mechanics (Chang and 
Light 1969, Flamand 1966)-presumably because Lie algebra is not sufficiently well 
known to physicists and engineers. Therefore we present in 9 3 the method of 
decoupled exponentials of Wei and Norman in a form which uses only simple 2 x 2 
matrix manipulations, thus avoiding the Lie algebraic language. In the main part, 9 4, 
we discuss the connection with the WKB method. In 9 5 we give an example for the 
improvement on the WKB method by a perturbative solution of the Wei-Norman 
equations. In the Appendix some results from elementary matrix algebra are listed. 

In the following, all 'vectors' are 2 x 1 matrices, all 'matrices' are 2 x 2 matrices. 

2. Preparation of the differential equation 

2.1. The DE for the integral matrix Q(t) 

Equation (1) can be put in the form of two coupled first-order DE 

j ,  = MWY, 

where the components of 

Y = ( y ' )  
Y 2  

are some linear combinations of U and U, and the components of 

depend on w ( t ) .  Now the ansatz 

Y 0 )  = QO)Y (01, 
where 

sin p 
Y 2 0  

transforms equation (3) to the matrix DE for the integral matrix 0: 

d(t) = M ( t ) Q ( t ) ,  

with the initial condition 

Q(O)=(, 1 0  l ) = m ~ .  

2.2. Three different parametrisations for y 

We choose as a first parametrisation 

y-*y,=(Y1) Y2 I =(,"). 
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Then 

M+M”(1 0 -w2 )% 

One can get a whole class of admissible parametrisations by applying a Lyapunov 
transformation (Pease 1965) to y I :  

Y I  = Bi(t)yi ( i  = 11,111, . . .). (12) 

Here B( t )  is continuously differentiable, B ( t )  and B ( t )  are bounded, and the magnitude 
of det B ( t )  has a lower bound, in the interval It. Substituting this t-dependent coor- 
dinate transformation (12) into equation (3) (with index I), we obtain 

ji = Mi(t)yi, with Mi = BT’MIBi - BY’Si. (13) 

A Lyapunov transformation transforms Q as follows: 

(Van Kampen 1967) we get 

Y n = ( Y 1 )  = t (  u -iu/w ) 
y 2  II u + i r i / w  

and 

~ * ~ = i w ( l  O)-*( 1 -1 l ) .  
0 -1 2 w  -1 

i = 111: With 

W O  
B I I I = ( ~  1) 

(Mulholland 1970) we get 

yIH= ( Y l )  = (U;”) 
y z  I 1 1  

and 

These three parametrisations will not be used before 0 4. 

2.3. Extraction of the trace part 

M from equation ( 5 )  is decomposed into 

M = MT+ MR, 
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where 
MT = k(ml + m4)m =$(TO Tr M ( t )  

and 

With the factor decomposition of the integral matrix 

Q = QRQT, (24)  

d ~ =  (QR~MTQR)QT=MTQT=~QTT~ M ( t ) ,  QT(O) = (TO (25)  

we get from equation (8) the two matrix DE 

and 

QR=MRQR, QR(O) = (TO. (26)  
According to theorem 1 of the Appendix, equation (25)  can immediately be solved: 

Q,(t) = exp( I f  M d s )  ds) = (TO exp( $ Iof Tr M ( s )  ds), (27)  
0 

a multiple of the unit matrix. 

2.4. Extraction of the antisymmetric part 

Next we decompose MR, equation (23) ,  into 

M R =  MA +MS, 
where the antisymmetric and the symmetric part are respectively 

0 1  
M A - Z W R - M T R )  -1 = t ( m 2 - m 3 ) ( - 1  o) = t ( m z - m s ) X l  

(see Appendix) and 

m z + m 3  )* &f -1 m 1 - m  
m2 f m3 -(ml - m4) 

S - Z(MR+ME ) = $( 
With the factor decomposition 

QR = QAQs, 

we obtain from equation (26)  the two DE 

QA=MAQA, QA(O) = CO, 

Qs = TQs, Qs(0) = (TO, 

with 
T = QilMsQA. 

f(t) = 1 I f  h ( s )  - m d s ) )  ds 

Equation (32)  can again be solved according to theorem 1 :  with 

0 

(32)  

(33)  

(34)  

(35)  
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we find I 

Q A ( t )  = exp( f(r)X1) = uo cos f +X1 sin f = (-:;;::;), 
a two-dimensional rotation matrix. Here equation (77) has been used. Thus from (34): 

(ml - m4) cos 2f - (m2 + m3) sin 2f 
(ml - m4) sin 2f + (m2 + m3) cos 2f 

(ml - m4) sin 2f + (m2 + m3) cos 2f 
-(ml - m4) cos Zf + (m2 + m3) sin 2f 

T=;( 

Note that both the extraction of the trace part and the extraction of the antisymmetric 
part are Lyapunov transformations (with Bi = QT, QA respectively). 

3. The method of decoupled exponentials 

3.1. Derivation of the Riccati DE for the exponents 

We use the fact that each 2 x 2 matrix with vanishing trace can be represented by a linear 
combination of the Pauli matrices ul,  uz, u3, or by some linear combination X1, X2, X3 
of the basic matrices ui (see Appendix). Especially we have chosen 

X1 = iv2, x2 = u3, X3 = (ul + iu2)/2 = U+. (38) 

Now the remaining DE (33) with T from equation (37) can be solved at least locally in 
the form 

but in general not globally (Magnus 1954, Wichmann 1961). However, Wei and 
Norman (1963, 1964) and Wei (1963) have shown that the ansatz 

of decoupled exponentials is superior to the form (39); in the case of a 2 X 2 matrix, this 
solution holds globally if a suitable basis Xi is chosen. Besides (38) there are other 
combinations of the matrices ul, u2, u3 which will do it too (but not the original Pauli 
matrices, for example). One could have applied a corresponding factorisation 
immediately to the DE (8 ) ;  however, we have preferred first to simplify the DE as far as 
possible. Explicitly, we have (cf equations ( 7 9 ,  (76), (77)) 

Qs(t)  = e g l x l  egZxz e g l X 3  

= ( cos g1 sin gl) (ex; g2 
-sin gl cosgl 

COS gi exp gz g3 cos g1 exp gz + sin gl  exp(-g2) 
-sin g1 exp gz -g3 sin gl  exp g2 +cos g, exp(-g2) 
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Substitution into equation (33) yields a system of four equations, which we want to 
solve for the three derivatives gi. This system is consistent; the solution is 

g1= -(tl sin 2gl + t2 cos 2g1), 

8 2  = t l  cos 2gl - t 2  sin 2g1, 

i 3  = 2 exp(-2g2)(tl sin 2g1 + t2 COS 2g1). 

Here one can see the usefulness of the basis X i :  (i) the system of four equations is 
solvable; and (ii) the system (42) is decoupled. A simple transformation 

h =tan g, or gl = tan-' h (43) 

transforms equation (42a) into a Riccati DE 

h = -2tih - t 2 ( l -  h2) ,  with h (0) = 0. (44) 

Having solved equation (44), one knows gl, and equations (42b, c )  can be solved by 
simple quadratures. This is the best that can be expected: the reduction of the whole 
problem to the solution of the Riccati DE (44). 

3.2. Total solution 

We have, putting together equations (24) with (27), (31) with (36), and (41): 

)- cos(f+ 81) e x ~  g2 C O S ( ~ +  gdg3 exp g 2 +  sin(f+ gl) exp(-g2) 
-sin(f+ gd exp g2 -sin(f+ gdg3 exp g2 + cos(f+ gl) exp(-g2) 

= QT( 

(45) 
We define new variables p ( t )  and a ( t )  by (cf equation (7)) 

P cos a = YZO exp(-gd, 

tan a = (tan p + g3) exp(2g2), 

p 2  = yZo exp(-2g2)/cos2 a. 

P sin a = (Y  IO + g3y20) exp g2; (46) 

(47a) 

(476) 

therefore 

Then, according to equation (6), 

This result was to be expected: for w 2 ( t )  = wg = constant, the solution of equation (1) is 

U (t) = a cos(w0t + $). 

A function w = w ( t )  changes, in general, the amplitude as well as the phase into 
functions depending on t. 
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4. The WKB approximation 

We start with the second parametrisation, equations (16), (17). Since m2 = m3, we have 
exactly f = 0, equation (35), and QA(t) = c0. Van Kampen (1967) has shown that one 
can get the WKB approximation by neglecting the non-diagonal terms in (17). 
Therefore 

and from equation (37) 

T = i w ( l  0 -1 O ) = i w ( t ) 0 3 .  

According to theorem 1 of the Appendix we find from (33) with (75) 

where 

Thus, with (45), for the second form of parametrisation in the WKB approximation 

In the first form of parametrisation we obtain from (14) 

QI = BII(f)QII(f)BII1 (01, 

where BII is given by (15). Explicitly 

(54) 

For the third form of parametrisation we have from (14) 

QrII(t) = Bii: (t)Qdt)BIII(0), 

where BIII is given by (18). Explicitly 

(57) 

is the expression of the WKB approximation for the third form of parametrisation. 

according to (35) 
On the other hand, we have directly from MIII in (20) m2 = - w ( t )  = -m3;  therefore, 
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and with equation (36)  

)*  
cosr -sinr 

cos r = ( sin r 

From equation (27)  

QT0) = ( w ( 0 ) / w ( t ) ) 1 ' 2 v o .  

Finally, according to (37) ,  for small values of w / 2 w  

T -  w ( 
2 w  -sin2r -cos2r 

Then Qs =constant = go, and Q = Qrlr agrees with (58). But Qs = vo implies gl = g2 = 
g3 = 0. Therefore each set {SI, gz, g3} f (0 ,  0, 0 )  gives, in the third form of parametrisa- 
tion, an improvement compared with the WKB approximation. Such a set will be 
calculated in the next section. 

5. Approximate solution 

We assume in equation (37)  that t l  and rZ both contain a small factor E :  

t i  =  ET^, r2 = eTz (63)  

(other cases can be discussed correspondingly). Then the series expansion 

h(t)=ho(t)+Ehl( t )+-EZhZ(r)+.  . . , 
with 

hi(0) = 0 ( i  = 0 ,  1, . . .), 

is substituted into (44). Equating coefficients of equal powers yields 

and so on. Therefore 

h ( t )  = --E jor Tz(s) ds + 2 ~ '  Io' ds T1 los ds' Tz + 

= -lor r 2 ( s )  ds + 2 lo' ds tl(s) los ds' t2(s')  + . . . . 

In lowest order in E we obtain from equation (43) 
r r  
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and from (42b, c)  

g2 = J t l ( s )  ds - E ,  
0 

.r 

The ansatz 

Q = p + y = p + e r ,  

where p is given by equation ( 7 ) ,  yields tan Q =tan @ + y ( 1  +tan2 0) .  Comparing with 
( 4 7 a )  we get 

Then the total phase in equation (48 )  reads 

4 = f + g 1 + a  = ( f  + P ) + ( g 1 + r ) =  ( f  + P ) + E . .  . 

= ( f + ~ ) + s i n 2 ~ ~ o r t l ( s ) d s + c o s 2 ~ ~ o ' ~ 2 ( s ) d s .  (69 )  

The main contribution comes from the antisymmetric matrix M A ( f )  and from the initial 
conditions. The small contributions come from the symmetric, traceless matrix MS (or 
T ) .  The matrix MT with non-vanishing trace does not influence the phase at all. 

For the factor p ( t )  in the amplitude of equation (48 )  we get now from (47b)  

Contributions to p come from the initial conditions (po and p )  and from the symmetric, 
traceless matrix Ms. Finally, the matrix MT with non-vanishing trace also contributes to 
the total amplitude. 

Equations (69 )  and (70 )  can be simplified by the definitions 

p l ( t )  cos 8 0 )  = Jof t l ( s )  ds, p l ( t )  sin W )  = JOr t d s )  ds, p1- E .  ( 71 )  

Then 

Appendix. Some elementary matrix algebra 

Theorem 1. Given the matrix DE Z ( t )  = K ( t ) Z ( t )  with Z ( 0 )  = I  and K ( t )  analytic in If ,  
then a solution of the form 
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exists, if and only if the commutator 

for all t E I,. For a proof see, for example, Martin (1968). 

For the Pauli matrices we use the following representation: 

u o = ( o  1 0  1)' r r l = ( l  0 1  o)' m=(p -;), m = ( l  O>=xz. 
0 -1 

(73) 
Then 

We need the exponentials (defined as e* = X:=o .4"/n !) 

eaX1 can also be calculated by a series expansion, or, with 

P = ( i  -1) a n d D = ( i  0 -i O )  ' 

as follows: 

=go cos a + X I  sin a. 
-sin a cosa 
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